Browsing by Author "Blackburn, W. H."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Assessment of Stormflow and Water Quality from Undisturbed and Site Prepared Forest Land in East Texas (Final Report)(Texas Water Resources Institute, 1983-01) Weichert, A. T.; Crawley, W. W.; Nieber, J. L.; Blackburn, W. H.; DeHaven, M. G.In 1979, nine small forested watersheds were instrumented in East Texas to determine the effect of intensive forest management practices On water quantity and quality. Three replications of three treatments were used: 1) clearcutting - followed by shearing and windrowing, 2) clearcutting - followed by roller chopping and 3) undisturbed control. Following treatment, the sheared and windrowed sites exposed 57% of the surface soil compared to 16% for the chopped watersheds. During 1981, the first year after treatment, stormflow volumes increased with the intensity of the site disturbance. Sites sheared produced the greatest amount of stormflow (5.76 inches), followed by chopped (3.26 inches) and the undisturbed watersheds (1.03 inches). Stormflow volumes decreased 66% and 57% on the sheared and chopped watersheds the second year following treatment. Sediment losses were significantly higher on the sheared watersheds (2,620 lb/acre) than the chopped (22 lb/acre), during 1981. By the fall of 1982, the exposure of mineral soil on the sheared sites dropped to 20% and to 4% on the chopped sites. For this reason and the lower volume of runoff, sediment loss for 1982 dropped to 71.3, 4.9 and 4.5 lb/acre for the sheared, chopped and undisturbed watersheds, respectively. Nitrate concentrations were significantly different between treatments during 1981: Sheared - 205 ppb, chopped - 96 ppb and control 10 ppb. During 1982, although nitrate concentrations were lower, the sheared watershed still had a significantly higher concentration. Total nitrogen concentration on the sheared sites was 2,155 ppb, which was significantly higher than the chopped (999 ppb) or the control sites (996 ppb) for 1981. The first year total nitrogen export from the sheared sites (2.79 lb/acre) was 3.5 times greater than the chopped loss (0.76 lb/acre) and 12 times greater than the loss on the control sites (0.24 lb/acre). The second year following treatment, total nitrogen concentrations were not significantly different and total nitrogen loss on the sheared areas was less than half of the loss recorded from the control sites during 1981. Total phosphorus concentrations for 1981 were 221, 85 and 54 ppb for the sheared, chopped and control watersheds, respectively. Total phosphorus loss for this period was only 0.297 lb/acre from the sheared treatments, but was significantly higher than the chopped or undisturbed treatments. A drop in sediment concentrations and runoff in 1982 reduced phosphorus losses on the sheared watersheds by over 90%. Calcium, potassium and sodium concentrations during 1981, were highest for the chopped treatments, while magnesium concentrations were highest on the sheared treatments. Export of these elements was greatest from the sheared sites, except for calcium, which was lost in greater quantities on the chopped sites. During 1982 there was no significant difference between treatments for Ca, Mg, K and Na concentrations. The rapid revegetation and reduction in exposed mineral soil that occurred on both sheared and chopped treatments during 1982, resulted in a decrease in runoff and sediment and nutrient losses. As the stabilization of sites continues, treatment differences should diminish. Limiting shearing and windrowing activities to the more gentle slopes will reduce first year erosion and prevent increases in sediment and nutrient losses. Roller chopping on the other hand, appears to cause only minor changes to water yield and quality on slopes of up to 25%.Item Assessment of Stormflow and Water Quality from Undisturbed and Site Prepared Forest Land in East Texas (Interim Report)(Texas Water Resources Institute, 1982-01) Weichert, A. T.; Knight, R. W.; Blackburn, W. H.; DeHaven, M. G.Item Effect of Forest Site Preparation and Livestock Grazing on Stormflow and Water Quality in the South East(Texas Water Resources Institute, 1983-08) Blackburn, W. H.; Hunter, T. K.; Dobrowolski, J. P.; Weichert, A. T.The commercial forestlands of East Texas and Louisiana are the most water-efficient producing areas of the two states. Current and projected water shortages for Texas makes this water-rich area extremely important to future growth and development of Texas. However, little is known about the influence of intensive forest practices or livestock grazing on water quality, yield or site productivity in Texas. This is the only instrumented watershed study in Texas or Louisiana that is currently evaluating the influence of livestock grazing on water and the second study evaluating the impact of intensive forest practices on water. This research is providing information that will enable forest managers, state and federal agencies to select livestock grazing and/or forest management practices that will maintain a productive forest environment and minimize off-site water quality impacts. It is imperative that if Texas in the next 30 years is: 1) to help meet the timber product demand that is projected to be placed on the Southeast, and 2) to meet the projected water shortages we need to understand the impact of intensive forest and livestock grazing practices on site productivity and water. This research is helping provide the basic information needed to manage Southeast forestlands for timber products, red meat and water. The southern states are currently producing half of the nation's wood supply with large demands to increase timber production expected in the next 20 years. The challenge facing forestry in the South is in developing technology and management to meet this increased demand and maintain an acceptable forest environment in the face of increased taxes, rising labor, equipment and energy costs. The intensive forest management practices of harvesting and site preparation have been identified as causing potential declines in site production and as sources of nonpoint pollution. The Clean Water Act (PL 92-500 and PL 95-217) requires identification and control of silvicultural activities and livestock grazing which contribute to nonpoint source pollution. Implementation of "best management practices", either voluntary or mandatory, are the suggested means for maintaining water quality and site productivity. Hydrologic impacts of livestock grazing result primarily from the interactions of climate, vegetation, soil, and intensity and duration of livestock use. Thus, grazing impacts will vary naturally from area to area due to the normal variability of these factors. Few studies have attempted to account for these natural variations. Documentation of the intensity and duration of livestock grazing has been poor or completely ignored in most studies. In East Texas, the impact of livestock grazing on water quality has had no research effort. Most research regarding the impact of grazing upon water quality has been conducted outside the Southern Region and, more importantly, outside of the Gulf Coastal Plains. Because geology, soils , topography, climate, etc. are different, extensions of that research to the East Texas and Louisiana areas may be misleading.Item The Impact of Harvesting and Site Preparation on Stormflow and Water Quality in East Texas(Texas Water Resources Institute, 1984-03) Weichert, A. T.; Knight, R. W.; Blackburn, W. H.; DeHaven, M. G.In 1979, nine small forested watersheds were instrumented in East Texas to determine the effect of intensive forest management practices on water quantity and quality. Three replications of three treatments were used: 1) clearcutting - followed by shearing ant windrowing, 2) clearcutting - followed by roller chopping and 3) undisturbed control. Following treatment, the sheared and windrowed sites exposed 57% of the surface soil compared to 16% for the chopped watersheds. During 1981, the first year after treatment, stormflow volumes increased with the intensity of the site disturbance. Sites sheared produced the greatest amount of stormflow (5.76 inches), followed by chopped (3.26 inches) and the undisturbed watersheds (1.03 inches). Stormflow volumes decreased 66% and 57% on the sheared and chopped watersheds the second year following treatment. Stormflow volumes in 1983 were 2.46, 1.75 and 0.84 inches for the sheared, chopped and control watersheds, respectively. Sediment losses were significantly higher on the sheared watersheds (2,620 lb/acre) than the chopped (22 lb/acre), during 1981. By the fall of 1982, the exposure of mineral soil on the sheared sites decreased to 20% and to 4% on the chopped sites. For this reason and the lower volume of runoff, sediment loss for 1982 dropped to 71.3, 4.9 and 4.5 lb/acre for the sheared, chopped and undisturbed watersheds, respectively. Sediment losses in the third year following treatment continued decreasing on the sheared sites (30.9) and remained approximately the same on the chopped and control sites. Nitrate concentrations were significantly different between treatments during 1981: Sheared - 205 ppb, chopped - 96 ppb and control ~ 10 ppb. During 1982, although nitrate concentrations were lower, the sheared watersheds still had a significantly higher concentration. Nitrate concentrations in 1983 remained low at 54, 20 and 10 ppb for the sheared, chopped and control watersheds, respectively. Total nitrogen concentration on the sheared sites was 2,155 ppb, which was significantly higher than the chopped (999 ppb) or the control sites (996 ppb) for 1981. The first year total nitrogen export from the sheared sites (2.79 lb/acre) was 3.5 times greater than the chopped loss (0.76 lb/acre) and 12 times greater than the loss on the control sites (0.24 lb/acre). The second year following treatment, total nitrogen concentrations were not significantly different and total nitrogen loss on the sheared areas was less than half of the loss recorded from the control sites during 1981. Total nitrogen loss in the third year after treatment was reduced to 0.37, 0.20 and 0.08 lb/ acre for the sheared, chopped and control treatments, respectively. Total phosphorus concentrations for 1981 were 221, 85 and 54 ppb for the sheared, chopped and control watersheds, respectively. Total phosphorus loss for this period was only 0.297 lb/acre from the sheared treatments, but was significantly higher than the chopped or undisturbed treatments. A drop in sediment concentrations and runoff in 1982 reduced phosphorus losses on the sheared watersheds by over 90%. Total phosphorus export in 1983 decreased on sheared sites (0.019 lb/acre), but increased slightly on chopped (0.011 lb/acre) and control sites (0.006 lb/acre). Calcium, potassium and sodium concentrations during 1981, were highest for the chopped treatments, while magnesium concentrations were highest on the sheared treatments. Export of these elements was greatest from the sheared sites, except for calcium, which was lost in greater quantities on the chopped sites. During 1982 there was no significant difference between treatments for Ca, Mg, K and Na concentrations. Cation concentrations and losses on the treated watersheds continued declining in the third year following treatment. Increases in stormflow and sediment and nutrient losses appear to be temporary on sheared and chopped treatments. Rapid revegetation established surface cover and reduced mineral soil exposure. As the stabilization of sites continues, treatment differences should diminish. Limiting shearing and windrowing activities to the more gentle slopes will reduce first year erosion and prevent increases in sediment and nutrient losses. Roller chopping on the other hand, appears to cause only minor changes to water yield and quality on slopes of up to 25%.Item Silvicultural Activities in Relation to Water Quality in Texas: An Assesment of Potential Problems and Solutions(Texas Water Resources Institute, 1978-02-01) DeHaven, M. G.; Blume, T. A.; Jackson, B. D.; deSteiguer, J. E.; Hickman, C. A.; Blackburn, W. H.Southern forests are expected to supply a large portion of the Nation's future timber requirement. Projected demands on southern forests continue to exceed allowable cut. As an outgrowth of this demand, intensive management of pine forests enabled the South to produce 45 percent of the Nation's timber harvest in 1970 (USDA, Forest Service, 1973). The Southern Forest Resource Analysis Committee (1969) stated that, if projected timber needs of the year 2000 are to be met, at least ten million acres of bare or poorly stocked land must be planted with pine by 1985 and another twenty million acres converted from low-grade hardwoods to pine. The challenge facing forestry in the South is how to meet this increased demand and maintain an acceptable forest environment in the face of increased taxes, rising labor and equipment costs and predicted petroleum shortages. Undisturbed forests are generally recognized as primary sources of high quality water. Although the Federal Water Pollution Control Act Amendments of 1972 (Public Law No. 92-500) make pollution from forest practices increasingly more important, the effects of these practices on water quality are not known for East Texas. The quality of streamflow from forested watersheds fluctuates constantly in response to natural stress, and can be influenced greatly by man's activities. Forest management practices can potentially influence the following water quality parameters: (1) sediment, (2) nutrients, (3) temperature, (4) dissolved oxygen/organic matter, and (5) introduced chemicals. It must be realized from the onset that sediment due to geologic erosion is a natural component of fresh water streams and that high concentrations may have occurred naturally for short periods due to perturbations in the ecosystem such as wildfires. Sediment is not necessarily a pollutant and only becomes one when it can be demonstrated that it is exceeding natural levels and is interfering with the beneficial use of water. A certain amount of sediment and nutrients are needed in Gulf Bays and Estuaries to maintain their productivity (Mathewson and Minter, 1976; Diener, 1964; Ketchum, 1967). Texas does not have a stream water quality standard for sediment and due to the complexities involved will probably not develop one. Thus, sediment as used in this report, becomes important: (1) as a carrier of plant nutrients and forest chemicals, and (2) in that practices which reduce sediment loss will usually reduce nutrient, organic matter and introduced chemical losses and prevent water temperature increases, as well. This report is the result of an interagency contract between Texas Department of Water Resources, Texas Agricultural Experiment Station and Texas Water Resources Institute to: (1) develop an overview of commercial forests and forestry operations in Texas, (2) identify, describe and characterize control strategies for nonpoint sources of pollution from silvicultural activities, and (3) develop and demonstrate a methodology for selecting control strategies in given problem situations. The following topics are covered: (1) an overview of forestry in East Texas, (2) silvicultural practices and nonpoint sources of pollution, (3) control strategies, (4) methodology for the selection of control strategies, (5) institutional aspects of controlling silvicultural nonpoint source pollution, (6) ongoing research and research needs, and (7) hydrology of East Texas. It is important to recognize that this report does not specify that nonpoint pollution from forestlands in East Texas is a problem. Likewise, the report does not set pollution control goals or criteria that should be met by a control plan, since this is the responsibility of the State. In areas where a potential nonpoint pollution problem exists; the suggested control strategies should be useful in selecting control measures that are appropriate to the special conditions imposed by differences in climate, soil, topography, and forest practice.